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Abstract

The problem of a crack perpendicularly approaching a bimaterial interface is examined using both global
and local approaches to fracture[ The global approach is based on the J!integral with a second parameter\
Q\ which scales the stress triaxiality ahead of the crack[ The local approach is based on either brittle fracture
"Beremin model# or ductile fracture "Rice and Tracey model#[ In the _rst case\ the Weibull stress over the
plastic zone is calculated[ In the second case\ the void growth rate is calculated at the tip of the crack over
a representative volume "generally associated with a characteristic length of the material#[ After a brief
summary of each approach\ the results for a crack near an elastically homogeneous\ plastically mismatched
interface are presented[ The behaviour of the bimaterial is expressed in relation to the behavior of the
homogeneous material[ It is shown that there is an e}ect on the crack behavior which depends on the
direction of crack propagation\ i[e[ from the harder material to the softer material or vice versa[ This e}ect
is examined as a function of change in yield strength ratio and hardening exponent\ n[ For the case of brittle
fracture\ the e}ect of changing the Weibull modulus\ m\ is also examined[ The models based on the local
approach show that both stress! and strain!controlled fracture mechanisms must be accounted for[ This
implies the necessity of using the two parameters J and Q in the global approach[ This is due to the fact that
the stressÐstrain _elds ahead of the crack tip are a}ected by the nature of the second material[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Numerous applications in which the fracture behaviour at interfaces must be considered can be
found in the domains of the coating industry\ composites\ and the welding industries[ Increasing
interest in the application of functionally graded materials also requires a basic understanding of
the e}ect of material property combinations on resistance to fracture[

Two common approaches to fracture in homogeneous materials are the global approach and
the local approach[ The global approach examines the change in the crack driving force in terms
of the J!integral "Rice\ 0857#\ which may be related to the energy release rate[ More recently\ the
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e}ect of the Q!factor "O|Dowd and Shih\ 0880\ 0881#\ which accounts for scaling the stress
triaxiality depending on the crack tip constraint\ has been emphasized[ The second approach\
referred to as the local approach\ has been developed in particular by Beremin "0870\ 0872# and
considers the local near!tip stress and deformation contributions to the brittle and ductile failure
processes[ Both of these approaches have been applied to various fracture conditions in homo!
geneous materials and comparisons of the two approaches have been carried out by Pineau "0881#
and Pineau and Joly "0880#[

These two approaches may also be applied to the case of fracture in bimaterial systems[ In
bimaterial fracture\ problem de_nition involves some basic features\ namely the type of bimaterial
system examined "elasticÐelastic or elasticÐplastic# and the orientation of the crack with respect to
the interface "parallel or perpendicular#[ Once these conditions have been de_ned\ the changes in
crack driving force as a function of material properties and crack orientation may be examined
using either the global or local approach[

The case of bimaterial fracture in elasticÐelastic bimaterial systems has been studied by numerous
groups for the crack both parallel and perpendicular to the interface[ For the crack parallel to the
interface of an elasticÐelastic bimaterial\ analytical results were _rst presented in Williams "0848#
and England "0854#[ For the crack parallel to the interface of an elasticÐplastic bimaterial numerical
studies were reported by Woeltjen et al[ "0882# and Ganti and Parks "0886#[ Experimental results
using the local approach were presented by Ohata et al[ "0885#[

Fracture perpendicular to the interface has been studied by Zak and Williams "0852# for elasticÐ
elastic bimaterials\ and Romeo and Ballarini "0883\ 0884# for elasticÐplastic bimaterials[ To the
authors| knowledge\ the case of a crack perpendicular to the interface has not yet been examined
using the local approach[

The aim of the present work is to _rst re!examine the interfacial fracture problem for the crack
perpendicular to the interface\ using the two!parameter global approach to account for changes in
crack tip triaxiality[ Then\ the same problem using the brittle and ductile failure models of the
local approach is examined[ The consequences of the bimaterial interface on fracture in terms of
both the global and local approaches are presented and discussed[ In particular\ the bimaterial
cases studied in this work may be applied\ for example\ to the case of welded austenitic and ferritic
steels or heat!a}ected zones\ which have similar elastic material properties but di}erent plastic
properties[

1[ Problem formulation and _nite element calculations

A schematic of the problem geometry and conventions is shown in Fig[ 1[ The crack is per!
pendicularly approaching the interface from material 0 towards material 1[ The two materials have
the same elastic moduli "E0 � E1#\ Poisson|s ratio "n0 � n1#\ and hardening exponent but di}erent
yield strengths[ The material law used to describe the behaviour is the power!law relation shown
in eqn "0# ]

o �
sYi

E 0
s

sYi1
ni

"0#

where i refers to material 0 or 1[ The yield strength ratio between the two materials is given by k ]
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Fig[ 0[ Finite element full!scale mesh and crack!tip region[

k �
sY0

sY1

"1#

Five yield strength ratios are considered for three di}erent hardening exponents[ For material 0\
sY0:E � 9[9904 and n0 � 9[2[ The yield strength of material 0 remains _xed while the yield strength
of material 1 varies to give a ratio sY0:sY1 � 0

1
\ 1

2
\ 0

0
\ 2

1
or 1

0
[ For a given bimaterial\ the hardening

exponent is the same for both materials and is taken to be n � 1\ 09 or 099[
The crack is loaded by imposing a displacement along the edge of the mesh "Fig[ 0# which is

calculated from the elastic stress intensity factor "K!_eld# "see Fig[ 1#[ Since the elastic moduli of
the materials are the same\ a change in the yield strength of the materials does not a}ect the
loading required on the far!_eld boundaries as long as the conditions of small!scaled yielding are
ful_lled[ Thus\ the material response at the tip of the crack can be compared for di}erent yield
strength combinations subjected to the same far!_eld loading conditions[

Under small!scale yielding conditions\ the J!integral can be related to the elastic K _eld by the
following relation ]

J �
K1

E
"0−n1# plane strain ^ J �

K1

E
plane stress "2#

The characteristic length scale used in this problem is rc � J:sY0[ A _nite deformation zone exists
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Fig[ 1[ Schematic showing problem geometry and conventions[

ahead of the crack tip within approximately 1rc "O|Dowd and Shih\ 0880\ 0881#[ Outside of this
zone\ the HRR "HutchinsonÐRiceÐRosengren# _elds "Hutchinson\ 0857 ^ Rice and Rosengren\
0857# characterize the near!tip stress and deformation _elds ahead of the crack[ The rc at the
maximum load\ rmax

c � Jmax:sY0\ is used to de_ne the second length scale\ L ¹ 3rmax
c \ which is the

length from the crack tip to the interface[ This value is used to normalize the load parameter giving
J9:sY0L[ Note that if L is too large\ there is no interaction between the plastic zone and the
interface[ Thus\ the crack is essentially still in a homogeneous material[ Conversely\ if L is too
small the crack is essentially on the interface and the e}ect of the interface ahead of the crack is
limited[ Here\ L is chosen to be smaller than the plastic zone size at the maximum load[ Typical
values used for steels are ] sY � 299 MPa\ n � 09\ L � 0Ð4 mm\ and JIc � 199 kJ:m1[ In the present
study\ the following combinations were used in order to represent a wide range of material
properties ] k � 0

1
\ 1

2
\ 0

0
\ 2

1
\ 1

0
\ n0 � n1 � n � 1\ 09\ 099[

Finite element calculations were carried out using the _nite element code Ze�bulon "Foerch et
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al[\ 0886 ^ Besson and Foerch\ 0886#[ The mesh consists of approximately 1599 eight!noded
elements using reduced integration[ The notch root radius at the tip of the crack is r ¹ 0

19
rmax
c [ The

calculations were carried out in small!deformation using a NewtonÐRaphson integration scheme[
The J!integral was computed using the DeLorenzi volume integral "DeLorenzi\ 0874#[

2[ Global approach

2[0[ J!inte`ral

In the global approach\ the J!integral is used to evaluate the crack driving force at the tip of the
crack as a function of the far!_eld loading\ K[ Under small!scale yielding in a homogeneous
material\ J can be determined from K by the relation given in eqn "2#[ In a homogeneous material\
a contour near the crack!tip or on the far!_eld boundary will give the same value for J[ For a
bimaterial\ however\ although the far!_eld integral does not change\ there is a change in the near!
tip J "see Fig[ 1#\ referred to as Jt\ since the deformation and stress _elds are a}ected due to the
presence of the second material[

In order to evaluate the e}ect of the second material for a bimaterial subjected to a given K
_eld\ the J!integral taken at the tip of the crack in the bimaterial\ Jt\ is compared to the J!integral
of the homogeneous material\ Jh

t \ which has been submitted to the same external loading conditions[
If the ratio Jt:J

h
t is greater than one\ this indicates an increase or {ampli_cation| in the crack!tip

driving forces[ If the ratio is less than one\ this is referred to as a {shielding| e}ect[

2[1[ Modi_ed HRR!_eld

The J!integral can be used to express the near!tip deformation and stress _elds through the use
of the HRR!_elds "Hutchinson\ 0857 ^ Rice and Rosengren\ 0857#[ Under certain conditions\ such
as a semi!in_nite crack in an in_nite "homogeneous# body\ the stress and strain pro_les given by
the HRR!_elds are close to the full!_eld solution[ Under other conditions\ however\ a second term
must be used to scale the crack tip stress _elds[ An example of such a situation can be found in the
case of full!scale plastic yielding\ as may occur in _nite specimen geometries\ or for cracks near
interfaces[

A Q!term\ introduced by O|Dowd and Shih "0880\ 0881#\ is used as the scaling factor which
scales the triaxial _eld ahead of the crack relative to a high or low triaxial reference _eld[ Using
the HRR _eld as the reference _eld in a homogeneous material with yield strength sY\ for example\
Q is de_ned as ]

Q �
suu−"suu#HRR

sY

"3#

at u � 9\ r ¹ 1rc\ where u is the angle from the crack plane and r is the radial distance from the
crack tip[ The length r ¹ 1rc delimits the region outside of which this _eld may be evaluated[ The
stress triaxiality scaling factor near the crack tip for a given bimaterial under a given load is
referred to as Qt[ Note that for the results presented in Sections 4[0[1 and 4[0[2\ the value of Qt is
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taken at r ¹ 1rc − 2r\ thus insuring that we have a valid Q value which has been obtained outside
of the _nite deformation zone[

The Q term may be incorporated into the stress _eld expression by using a modi_ed HRR _eld ]

sij

sY

� 0
JE

s1
YInr1

0:"n¦0#

s½ ij"u\ n#¦Qdij "4#

Here\ In is the integration constant\ which was determined numerically and s½ ij"u\ n# is a dimen!
sionless angular function\ where dij is the Kronecker delta[ Both can be found in "Shih\ 0872#[
Note that Q is assumed to be independent of r[

The strain is given by ]

oij

oY

� 0
JE

s1
YInr1

n:"n¦0#

o½ij"u# "5#

where o½ij"u# is also given in "Shih\ 0872#[ It is important to note the role of J and Q in the stress
expression given for sij:sY as well as the relative change in sij:sY and oij:oY with increasing n[ For
large n and with increasing load\ the _rst term of eqn "4# increases at a rate slower than that of the
second term[ At small n\ however\ the _rst term becomes more signi_cant[

Upon considering the expression in eqn "5#\ we see that the oij:oY term is to the power n:"n¦0#[
Since the term

JE

s1
YInr br�1rc

�
E

1InsY

is greater than one\ the contribution of deformation to a criterion which considers both stress and
deformation will increase faster than the contribution of stress\ which is only to the power 0:"n¦0#[
These points will be important for the discussion of results in Section 4[0[2[

An increase or decrease in the triaxial stress results in a stronger or weaker driving force\
respectively\ for the crack[ Since varying degrees of triaxiality can exist for the same degree of
deformation at the crack tip\ two di}erent bimaterials with the same Jt value will not necessarily
have the same Qt[ Note that for the results presented in Section 4[0[2\ the Qt values are calculated
based on the near!tip stress _elds calculated from Jt "not the remote boundary J#[

One example of the e}ect of Q\ examined by O|Dowd and Shih "0880\ 0881#\ is in the presence
of full!scale plastic yielding[ In their work\ they show that depending on specimen geometry\
di}erent levels of constraint are induced for the same far!_eld K[

3[ Local approach

3[0[ Beremin brittle fracture model

The brittle fracture model developed by Beremin "0872# may be used to determine the probability
of fracture for a brittle material[ The theory is based on a critical stress theory and also takes into
account the contribution of the Weibull e}ect in which the probability of reaching the critical
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stress is greater for a greater volume sample\ thus incorporating the statistical aspects of brittle
fracture[

The Weibull stress\ sw\ is obtained by integrating the maximum principal stress\ sI\ over a
plastically deformed volume ]

sw � 0
0
V9 gV\p×pc

sm
I dV1

0:m

"6#

Here\ V9 is the elementary unit volume\ V is the volume over which the plastic deformation\ p\ is
greater than a critical plastic deformation\ pc\ and m is the Weibull modulus[

The probability of fracture is then given by ]

Pr � 0−exp $− 0
sw

su1
m

% [ "7#

Note that only two parameters are needed to describe the material ] sm
u V9\ where su is the critical

stress required to fracture a volume\ V9\ and m\ the Weibull modulus[ Note also that the choice of
the volume V9 is not signi_cant since the results are always presented in terms of the ratio sw:s

h
w\

where sh
w is the value of the Weibull stress computed for the homogeneous material[

3[1[ Modi_ed Rice and Tracey ductile fracture model

Void growth ahead of the crack tip is given by the Rice and Tracey "Rice and Tracey\ 0858#
ductile fracture model[ The modi_ed version used by Beremin "0870# incorporates strain hardening
e}ects into this model[ Void growth is determined by integrating a term incorporating the plastic
deformation and stress triaxiality over a characteristic volume\ once again related to a characteristic
length of the material ahead of the crack[ For this model\ the characteristic distance is taken as
lc ¹ L:3 ¹ rmax

c and is used to de_ne the volume over which the integral shown in eqn "8# is
evaluated[ Using the material values and de_nition of rc given in Section 1\ rc � J:sY � lc ¹ 199Ð
499 microns which is on the order of the inclusion spacing in a typical material[

According to the model for ductile fracture\ failure occurs when the void growth ratio reaches
a critical value\ "R:R9#c[ The void growth is related to the stress triaxality ratio\ sm:seq\ and plastic
deformation by the equation ]

ln 0
R
R91� g

oeq

od

9[172 exp $0[4 0
sm

seq1% doeq "8#

where R and R9 are the _nal and initial radius\ respectively\ of the void\ oeq is the cumulative plastic
strain\ od is the deformation necessary to nucleate cavities from inclusions\ and sm and seq are the
mean stress and the equivalent stress "Von Mises stress#\ respectively[ The integral is taken over a
volume of dimensions lc×lc×unit thickness[ In the following\ it is assumed that od � 9 for the
sake of simplicity[

3[2[ Strain control fracture model

A third local criterion can be developed based on the cumulative plastic strain averaged over a
given volume ] ocum

p [ Here\ the volume over which ocum
p is determined has the same dimensions as
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Fig[ 2[ Variation in normalized Jt as a function of normalized load for various k and n "plane strain#[

that used for the ductile failure model used in Section 3[1[ Since this model is solely deformation
based\ it is used here for comparison to the results of the J!integral[

4[ Results and discussion

We now consider the numerical results obtained using each of these approaches[ We begin with
the results in terms of the global approach\ _rst with the J!integral alone\ and then with Q[ We
then consider the local approach using _rst the brittle model and _nally the ductile model[

4[0[ Global approach

4[0[0[ J!inte`ral
As discussed in Section 2[0\ the J!integral is used to evaluate the crack driving force at the tip

of the crack[ In particular\ the ratio Jt:J
h
t is used to determine if there is an increase or decrease in

the crack tip driving force due to the presence of the second material[ We begin with the case of a
bimaterial with varying k and n\ shown in Fig[ 2[ The stress rate is plane strain and the results are
presented in terms of the normalized load parameter\ J9:sY0L\ vs the changes in crack!tip driving
force\ Jt:J

h
t [

For k × 0\ the crack approaches the interface from the harder material and the ratio Jt:J
h
t is

greater than one\ indicating an increase or {ampli_cation| in the crack driving force[ Note again
that this is the plane strain state[ For a given k\ the ampli_cation e}ect is stronger for larger n\ and
for a given n\ increases with increasing k[ These e}ects can be understood in terms of a change in
the degree of deformation at the crack tip[ The softer the material on the other side of the interface\
the lower the constraint and thus the greater the deformation at the crack tip compared to the
homogeneous material[ The reverse e}ects are true for k ³ 0 "soft to hard# with stronger shielding
e}ect for increasing n and for decreasing k[ These e}ects\ however\ are less pronounced than for
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Fig[ 3[ Variation in normalized Jt as a function of a normalized load for various k with n � 09 "plane stress#[

k × 0 since the addition of the harder material constrains the relative amount of deformation
possible compared to the homogeneous material[

The results for the plane stress case for k � 1\ 0[4\ 9[55 and 9[4 and n � 09 are shown in Fig[ 3[
The general behaviour is similar to those found for the plane strain case\ with ampli_cation when
the crack approaches the interface from the harder material and shielding when approaching from
the softer material[

The results shown in Figs 2 and 3 indicate that\ in general\ there is an {ampli_cation| e}ect of
the driving forces when the crack propagates from hard to soft and a {shielding| e}ect when the
crack propagates from soft to hard[ These results are consistent with those reported in Sugimura
et al[ "0884# and Kim et al[ "0886#[

The use of Jt as the sole crack driving force criterion is su.cient when the conditions of J!
dominance are ful_lled[ In the case of a bimaterial however\ additional constraints due to the
presence of the second material may result in a deterioration of the J!dominant state[ It is thus
prudent to compare the stress pro_le ahead of the crack to the HRR _eld to determine whether or
not the constraint due to the second material is signi_cant[

4[0[1[ Q!factor
Figure 4 shows the stress triaxiality contours ahead of the crack tip and their corresponding

plastic deformation zones according to calculations for the homogeneous material "k � 0# and the
bimaterials k � 1 and 9[4[ The hardening exponent for all three cases is n � 09[ These plots are
for the same Jt at the crack tip "thus not necessarily the same far _eld load#[ It can be clearly seen
that the triaxiality at a given Jt is not the same for the three cases[

Figure 5 shows a plot of the opening stress pro_le ahead of the crack for the same material
systems shown in the previous _gure[ The HRR _eld for a homogeneous material is indicated by
the dashed line[ The stress pro_les are again given for the same Jt value[ It can be seen that\
depending on the crack propagation direction\ from hard to soft or soft to hard\ there is a decrease



A[S[ Kim et al[ : International Journal of Solids and Structures 25 "0888# 0734Ð07530743

Fig[ 4[ Values of stress triaxiality at Gauss points and their corresponding plastic deformation zones for di}erent values
of k with n � 09 for Jt:sYL � 9[2[

or increase\ respectively\ in the opening stress _eld ahead of the crack compared to the homogeneous
material[ These trends\ in terms of increasing the probability for fracture\ are the reverse of those
observed for the deformation based J!integral "Fig[ 2#[

In the same manner that the constraint due to the second material has an e}ect on the degree
of deformation\ as expressed by Jt\ the di}erence in stress pro_les is also a result of the constraint
due to the second material[ The constraint e}ect on the stress state is expressed by Q\ de_ned in
eqn "3#[ Recall that a positive Q indicates an increase in the stress triaxiality\ thus increasing the
failure probability\ and a negative Q indicates a decrease in the stress triaxiality\ decreasing the
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Fig[ 5[ Normalized opening stress pro_le for homogeneous and bimaterials for k � 1\ 9[4 "n � 09#[ The dashed lines
indicate the HRR!_eld[

Fig[ 6[ Change in J and Q "both expressed in relation to homogeneous material# for various n "k � 1\ 9[4#[

failure probability[ Note that this di}erence can be signi_cant if the value of Qh
t is on the order of

29[4[

4[0[2[ Combined effects of J and Q
Now\ having presented the principles of the interface e}ect on crack driving force in terms of J

and Q\ it is interesting to consider the two e}ects simultaneously for several bimaterial combi!
nations[ Such a plot is shown in Fig[ 6[ Here\ we see the change in Jt:J

h
t and Qt−Qh

t for _xed k
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Fig[ 7[ Change in J and Q "both expressed in relation to homogeneous material# for various k "n � 09#[

and varying hardening exponent[ The stress state is plane strain[ Note that the x!axis in this _gure
is given in terms of the actual crack tip state\ Jt:J

h
t \ instead of the far!_eld load\ J9:sY0L\ in order

to compare Qt for the crack subjected to the same J in the two materials[
It is useful to divide this "Jt:J

h
t #−"Qt−Qh

t # space into four quadrants\ each of which corresponds
to a particular crack!tip state[ In the upper!right quadrant\ Jt:J

h
t × 0 and Qt−Qh

t × 9[ Since both
conditions individually lead to increased chances for failure\ it is reasonable to assume that an
increase in both will also facilitate fracture[ This is obviously an undesirable region of the
"Jt:J

h
t #−"Qt−Qh

t # space[ The lower!left quadrant in which Jt:J
h
t ³ 0 and Qt−Qh

t ³ 9 indicates
the reverse tendencies\ reducing the crack!driving force and the initial stress state[ Thus\ in terms
of materials design it would be advantageous to have bimaterials whose properties fall into this
quadrant of the plot[

Conclusions pertaining to fracture states which fall into the remaining two quadrants are less
obvious[ The results presented for the bimaterials considered in the present work fall into these
quadrants and thus the relative importance of the J and Q criteria must be evaluated in order to
de_ne regions delimiting the chances for failure[

Returning to the numerical results presented in Fig[ 6\ we see that for k ³ 0\ there is a continuous
increase in Qt−Qh

t for a given k and for decreasing n[ For k × 0 there is an increase or decrease
in Qt−Qh

t depending on the hardening exponent[ Note that for the values at low loads "Jt:J
h
t close

to one#\ Q cannot be evaluated since the distance at which Q is evaluated is of the same order of
magnitude as the crack radius\ r[

The same plot for varying k and n � 09\ which is a value relevant to common materials\ is shown
in Fig[ 7 again for the plane strain case[ It can be seen that for k × 0\ there is an increase in Jt:J

h
t

and a decrease in Qt−Qh
t for increasing k[ Practically no di}erence is observed for the two cases

where k ³ 0[
Similar plots for the plane stress case are shown in Fig[ 8[ These trends are consistent with those

found in the plane strain case\ though the Qt−Qh
t e}ect is signi_cantly weaker[ In fact\ they are
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Fig[ 8[ Change in J and Q "both expressed in relation to homogeneous material# for various n "k � 1\ 9[4 plane stress#[

almost non!existent since the constraint e}ect in the out!of!plane direction no longer exists[ The
ability of the material at the interface to relax despite an increase in load reduces the change in
stress triaxiality[

It is clear that\ especially in the case of plane strain\ both the J and Q conditions must be
considered to fully capture the e}ect of the second material on the crack driving force[ It appears
that the Q criterion is less important in the plane stress case due to the relaxation of stresses at the
material interface[

4[1[ Local approach

The local approach provides another method by which the di}erence according to a stress!based
or stain!based model may be clearly illustrated[ We _rst examine the results obtained using the
deformation!based cumulative plastic strain to measure the change at the crack tip\ then using
the brittle model "stress!controlled# and _nally\ the ductile model "deformation:stress triaxiality
controlled#[

4[1[0[ Strain!controlled model
Figure 09 shows the J9:sY0L vs ocum

p :oh\cum
p for various k and n[ The criterion\ ocum

p is based on the
average plastic deformation over the characteristic volume discussed in Section 3[1[ Since it is
based solely on the deformation at the tip of the crack\ this criterion gives the same trends as those
given by the Jt:J

h
t criterion "Fig[ 2#[ Namely\ an increased chance for failure compared to the

homogeneous "k � 0# material if the crack propagates from hard to soft and a decreased chance
if the crack propagates from soft to hard[ The ratio\ ocum

p :oh\cum
p is related to Jt by ]

ocum
p

oh\cum
p

¹ 0
Jt

Jh
t 1

n:"n¦0#
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Fig[ 09[ Normalized cumulative plastic deformation "ocum
p # as function of normalized load for various n "plane strain#[

for high Jt\ i[e[ when the zone de_ned by the characteristic length lc is fully yielded which agrees
with eqn "5#[

4[1[1[ Model for brittle failure
Recall from Section 3[0 that the local approach brittle fracture model is based on a Weibull

stress criterion integrated over a plastically deformed volume of material ahead of the crack tip[
In the results presented here\ sw for the material in which the crack resides was measured and
compared to sh

w of the corresponding section in the homogeneous material in order to evaluate the
e}ect of the interface on fracture properties[ It is pointed out here that since sw of the second
material was not considered\ the possibility of failure occurring in the second material before the
crack interacts with the interface was not considered[

The brittle model applied to the bimaterial case where n � 09 and the yield strength ratio varies
as 9[4\ 9[55\ 0[4 and 1 is shown in Fig[ 00[ For k � 1 at low loads\ we see that the presence of the
second material initially induces a shielding e}ect compared to the homogeneous material[ As the
far!_eld load increases\ the ratio sw:s

h
w increases and eventually becomes greater than one\ indi!

cating an ampli_cation e}ect due to the presence of the second material[ Note that even small
values of sw:s

h
w\ when considered in terms of failure probability\ can be signi_cant since they are

taken to the power of the Weibull modulus\ m[
The behaviour of this curve can be explained by recalling that the model for brittle fracture is

based on an integral over a volume for which p × pc[ In these calculations\ pc was taken to be
9[990[ There are two factors which contribute to the evolution of the sw:s

h
w curve[ At low loads\

the stress dominating criterion\ related to the maximum principal stress\ governs the behaviour[
With increasing loads\ as the yielded zone grows\ the deformation part of the failure process\
associated with the plastic zone size\ begins to dominate[

The tendencies corroborate the results observed in Section 4[0\ where the two terms Jt:J
h
t and

Qt−Qh
t give opposite results for the same bimaterial case[ Note that the evolution of both of these
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Fig[ 00[ Variation in normalized Weibull stress as a function of normalized load for n � 09\ m � 05[

Fig[ 01[ Variation in normalized Weibull stress for various n "k � 1\ 9[4#[

criteria as a function of increasing load is the same "both increasing#[ Similar results are obtained
for k � 2:1[

Consider now the case of k � 1\ n � 1\ shown in Fig[ 01[ Based on the results for n � 09\ we
would expect a similar evolution of the sw:s

h
w curve\ with Q dominating at lower loads and J

becoming more signi_cant at higher loads[ Here\ however\ we see that the evolution of results
resembles those obtained for the Jt:J

h
t criterion ] a continuously increasing chance for failure when

the crack approaches the interface from hard to soft and a decreasing chance for failure when the
crack propagates from soft to hard[ There is no longer the variation from shielding to ampli_cation
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Fig[ 02[ Change in sw:sh
w for various m at low Jt[

observed for k � 1 and n � 09[ This can be understood by again considering the modi_ed HRR
_eld[

We see in eqn "4# that two terms contribute to the stress _eld pro_le[ As a result of the constraint
imposed by the second material\ these two terms result in competing e}ects for a given bimaterial
and loading system[ The opposing e}ects arise from the fact that the J term is a deformation
related criterion while the Q term is solely a stress!based criterion\ each of which reacts di}erently
under imposed constraint conditions[ The dependence of the ratio sw:s

h
w on these two e}ects can

be seen by considering the role of the hardening exponent\ n[
The relative importance of the _rst term of the modi_ed HRR _eld is clearly dependent on the

value of the hardening exponent\ n[ Depending on if n is large or small\ the J term is more or less
signi_cant compared to the Q term[ This explains the varying response of the sw:s

h
w criterion

despite a monotonically increasing external load[ For high n "n � 09\ 099# the Q!based part of the
stress _eld becomes more important[ The behaviour therefore generally follows that of the Q
criterion discussed in Section 4[0[1\ until\ at higher loads\ the e}ect of the large yielded volume
emerges and increases sw:s

h
w[

Similar plots for sw:s
h
w as a function of m are shown in Figs 02 and 03\\ for low "rc:L � 9[0# and

high "rc:L � 9[46# loads\ respectively[ In both cases\ the ratio sw:s
h
w is relatively constant for

m − 09[ For 3 ¾ m ¾ 09\ there is a dramatic change for the hardening exponent n � 099 at both
low and high loads and for n � 09 at high loads[ There is relatively little change for n � 1 at low
and high loads and for n � 09 at low loads[ Typical values of m for average steels fall between
04 ¾ m ¾ 14[ For brittle materials\ m values can be much lower but the hardening behaviour is
strong so the e}ect of m is expected to be low[

The same bimaterials examined under plane!stress conditions show results similar to those found
with the J!integral criterion alone "Figs 2 and 3#[ That is\ an increase in the Weibull stress for the
crack propagating from hard to soft and a decrease for the crack propagating soft to hard[ This
corresponds well with the results found for J9:sY0L vs Qt−Qh

t in the global approach\ where the
Qt−Qh

t value was almost zero[
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Fig[ 03[ Change in sw:sh
w for various m at high Jt[

Fig[ 04[ Variation in normalized ductile rupture parameter "R:R9#:"R:R9#h as a function of normalized load for various
n "k � 1\ 9[4#[

4[1[2[ Model for ductile fracture
The change in fracture behaviour according to the ductile failure model is examined in this

section[ Recall from Section 3[1 that the ductile failure model is based on the attainment of a
critical void growth ratio in a characteristic volume ahead of the crack tip[ In order to study the
in~uence of the interface on the void growth ratio\ we consider the ratio of "R:R9# measured for
the bimaterial compared to that of the homogeneous material\ "R:R9#h\ for the same far!_eld
loading conditions[ Recall from Section 3[1 that l � L:3[

In Fig[ 04 we see "R:R9#:"R:R9#h vs J9:sY0L for the bimaterial case with k � 9[4\ 1 and n � 1\
09\ 099[ Note that R9 in "R:R9# and "R:R9#h is the same since it refers to the initial cavity size in
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Fig[ 05[ Variation in ductile rupture parameter as a function of normalized load for various k "n � 09#[

the undeformed material[ When the crack propagates from hard to soft\ there is an increase in the
void growth compared to the homogeneous material\ indicating that fracture occurs earlier than
in the homogeneous material[ A decrease in this ratio is observed when the crack approaches the
interface from the softer material towards the harder material[ The change in the latter case is less
pronounced than that of the former[ This is reasonable since the degree of deformation constraint
imposed by the harder material on the softer material is less than in the reverse case "see Fig[ 09#[
Larger variations in the "R:R9#:"R:R9#h ratio are observed for material with low hardening for
both shielding and ampli_cation conditions[

"R:R9#:"R:R9#h for n � 09 and varying k is shown in Fig[ 05[ The results correspond well with
those expected based on a deformation!based criterion\ with stronger ampli_cation as the k ratio
increases above one or stronger shielding as k decreases below one[

The results found for the ductile model correspond well with those found in the global approach
using J alone\ except for the case of n � 1\ where practically no change in "R:R9#:"R:R9#h is
observed[ The di}erence between the two models can be explained by the consideration of the
triaxial stress e}ect in the local approach for ductile fracture[ Note that in all cases considered
here\ the decrease of stress triaxility is not high enough to overcome the increase in plastic
deformation[

5[ Summary and conclusions

The problem of a crack perpendicularly approaching a bimaterial with di}erent yield strengths
"sY0 � sY1# and the same hardening exponent "n0 � n1# has been examined in the context of both
global and local approaches to fracture[ It is shown that the bene_cial or detrimental e}ect due to
the presence of the second material may be evaluated according to either a stress! or strain!based
criterion[

In the global approach\ it has been shown that if a stress based criterion describes the failure
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mode\ the single parameter J is not su.cient\ and the two!parameter "JÐQ# approach must be
used in order to fully describe the e}ect of the bimaterial interface on crack propagation[ This is
due to the role of the triaxial stress in in~uencing the maximum stress over a characteristic distance[
The exception to this approach is in the case of a bimaterial under plane stress conditions where
the change in triaxiality with increasing load is close to zero[

In the global approach\ if deformation alone describes the failure process\ "such as in the case
of plane stress# the J!integral alone provides results similar to those based on the ductile model of
the local approach[

A careful analysis of the relative importance of the J and Q parameters must be carried out to
understand the implications of an interface with respect to fracture resistance[ Namely\ a criterion
which delimits the boundary within JÐQ space outside of which fracture occurs would be useful
for materials design[ Such an approach for homogeneous materials has already been examined by
Dodds et al[ "0882#[

The local approach provides one means of separating the deformation vs stress!based fracture
criteria for speci_c cases[ Depending on if the material fails by a brittle or ductile fracture
mechanism\ changes in the propensity to fracture can be evaluated as a function of bimaterial
mismatch properties[ The brittle fracture model\ based on the Weibull approach\ provides results
similar to the J!integral criterion for materials with high hardening "n � 1Ð3#[ That is\ an ampli!
_cation e}ect as the crack approaches the interface from the harder material[ For materials with
lower hardening\ however\ there is an evolution of the sw:s

h
w value depending on the degree of

loading[ For materials with a hardening exponent n � 09\ for example\ the model seems to indicate
a small shielding e}ect at low loads for the crack approaching the interface from the harder
material and then less shielding as the load increases[ The ductile fracture model\ which is based
on cavity growth\ exhibits trends similar to the J!integral for all k and n considered in this study[
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